These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes.
    Author: Ansede JH, Smith WR, Perry CH, St Claire RL, Brouwer KR.
    Journal: Drug Metab Dispos; 2010 Feb; 38(2):276-80. PubMed ID: 19910518.
    Abstract:
    Drug-induced cholestasis can result from the inhibition of biliary efflux of bile acids in the liver. Drugs may inhibit the hepatic uptake and/or the biliary efflux of bile acids resulting in an increase in serum concentrations. However, it is the intracellular concentration of bile acids that results in hepatotoxicity, and thus serum concentrations may not necessarily be an appropriate indicator of hepatotoxicity. In this study, sandwich-cultured rat hepatocytes were used as an in vitro model to assess the cholestatic potential of drugs using deuterium-labeled sodium taurocholate (d(8)-TCA) as a probe for bile acid transport. Eight drugs were tested as putative inhibitors of d(8)-TCA uptake and efflux. The hepatobiliary disposition of d(8)-TCA in the absence and presence of drugs was measured by using liquid chromatography/tandem mass spectrometry, and the accumulation (hepatocytes and hepatocytes plus bile), biliary excretion index (BEI), and in vitro biliary clearance (Cl(biliary)) were reported. Compounds were classified based on inhibition of uptake, efflux, or a combination of both processes. Cyclosporine A and glyburide showed a decrease in total (hepatocytes plus bile) accumulation, an increase in intracellular (hepatocytes only) accumulation, and a decrease in BEI and Cl(biliary) of d(8)-TCA, suggesting that efflux was primarily affected. Erythromycin estolate, troglitazone, and bosentan resulted in a decrease in accumulation (total and intracellular), BEI, and Cl(biliary) of d(8)-TCA, suggesting that uptake was primarily affected. Determination of a compound's relative effect on bile acid uptake, efflux, and direct determination of alterations in intracellular amounts of bile acids may provide useful mechanistic information on compounds that cause increases in serum bile acids.
    [Abstract] [Full Text] [Related] [New Search]