These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Author: Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K. Journal: Cell Death Differ; 2010 Apr; 17(4):689-98. PubMed ID: 19911008. Abstract: Post-translational modification and degradation of proteins by the ubiquitin-proteasome system are key regulatory mechanisms in cellular responses to various stimuli. The NF-kappaB signaling pathway is controlled by the ubiquitin-mediated proteolysis. RelA/p65, which is a main subunit of NF-kappaB, is ubiquitinated for degradation by SOCS-1, but the functional mechanism of its ubiquitination remains poorly understood. In this study we show that phosphorylation of RelA/p65 at Ser276 prevents its degradation by ubiquitin-mediated proteolysis. In contrast, impairment of Ser276 phosphorylation affects constitutive degradation of RelA/p65. Importantly, we identify Pim-1 as a further kinase responsible for the phosphorylation of RelA/p65 at Ser276. Depletion of Pim-1 hinders not only Ser276 phosphorylation but also transactivation of RelA/p65 target genes. We also show that Pim-1 contributes to recruitment of RelA/p65 to kappaB-elements to activate NF-kappaB signalling after TNF-alpha stimulation. In concert with these results, the knockdown of Pim-1 impairs IL-6 production and augments apoptosis by interfering RelA/p65 activation. These findings provide a model in which Pim-1 phosphorylation of RelA/p65 at Ser276 allows defense against ubiquitin-mediated degradation and whereby exerts activation of NF-kappaB signalling.[Abstract] [Full Text] [Related] [New Search]