These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivo Delta9-THC exposure-impaired hippocampal synaptic plasticity.
    Author: Fan N, Yang H, Zhang J, Chen C.
    Journal: J Neurochem; 2010 Feb; 112(3):691-702. PubMed ID: 19912468.
    Abstract:
    Chronic use of marijuana impairs synaptic plasticity and cognitive function. However, the molecular mechanisms by which marijuana alters long-term synaptic plasticity are largely unknown. Here, we show that repeated in vivo exposures to Delta9-THC for 7 consecutive days significantly impaired hippocampal long-term potentiation (LTP) of excitatory glutamatergic synaptic transmission. The Delta9-THC exposure-induced decrease in LTP was prevented by pharmacological inhibition or deletion of the cannabinoid 1 receptor (CB1R). To determine the molecular mechanisms underlying Delta9-THC-altered LTP, we targeted expression and function of the glutamate receptors (GluR) and phosphorylation status of cAMP-response element-binding protein (CREB). Chronic in vivo exposure to Delta9-THC produced CB1R-dependent decreases in expression of hippocampal GluR1, NR2A, and NR2B, the ratio of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/NMDA receptor-gated currents, and phosphorylation of CREB. Our results suggest that reduced expression and function of the GluR subunits and phosphorylation of CREB may underlie the impaired long-term synaptic plasticity induced by repeated in vivo exposure to Delta9-THC.
    [Abstract] [Full Text] [Related] [New Search]