These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional recovery and facial motoneuron survival are influenced by immunodeficiency in crush-axotomized mice.
    Author: Beahrs T, Tanzer L, Sanders VM, Jones KJ.
    Journal: Exp Neurol; 2010 Jan; 221(1):225-30. PubMed ID: 19913014.
    Abstract:
    Facial nerve axotomy is a well-described injury paradigm for peripheral nerve regeneration and facial motoneuron (FMN) survival. We have previously shown that CD4(+) T helper (Th) 1 and 2 effector subsets develop in the draining cervical lymph node, and that the IL-4/STAT-6 pathway of Th2 development is critical for FMN survival after transection axotomy. In addition, delayed behavioral recovery time in immunodeficient mice may be due to the absence of T and B cells. This study utilized a crush axotomy paradigm to evaluate FMN survival and functional recovery in WT, STAT-6 KO (impaired Th2 response), T-Bet KO (impaired Th1 response), and RAG-2 KO (lacking mature T and B cells) mice to elucidate the contributions of specific CD4(+) T cell subsets in motoneuron survival and recovery mechanisms. STAT-6 KO and RAG-2 KO mice exhibited decreased FMN survival after crush axotomy compared to WT, supporting a critical role for the Th2 effector cell in motoneuron survival before target reconnection. Long term FMN survival was sustained through 10 wpo after crush axotomy in both WT and RAG-2 KO mice, indicating that target derived neurotrophic support maintains FMN survival after target reconnection. In addition, RAG-2 KO mice exhibited delayed functional recovery compared to WT mice. Both STAT-6 and T-Bet KO mice exhibited partially delayed functional recovery compared to WT, though not to the extent of RAG-2 KO mice. Collectively, our findings indicate that both pro- and anti-inflammatory CD4(+) T cell responses contribute to optimal functional recovery from axotomy-induced facial paralysis, while FMN survival is supported by the anti-inflammatory Th2 response alone.
    [Abstract] [Full Text] [Related] [New Search]