These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recognition intensities of submolecular structures, mammalian glyco-structural units, ligand cluster and polyvalency in abrin-a-carbohydrate interactions.
    Author: Wu JH, Wu AM, Yang Z, Chen YY, Singha B, Chow LP, Lin JY.
    Journal: Biochimie; 2010 Feb; 92(2):147-56. PubMed ID: 19913595.
    Abstract:
    Abrin-a is the most toxic fraction of lectins isolated from Abrus precatorius seeds and belongs to the family of type 2 ribosome inactivating proteins (RIP). This toxin may act as a defense molecule in plants against viruses, fungi and insects, where attachment of abrin-a to the exposed glycans on the surface of target cells is the crucial and initial step of its cytotoxicity. Although it has been studied for over four decades, the recognition factors involved in abrin-a-carbohydrate interaction remains to be clarified. In this study, roles of mammalian glyco-structural units, ligand clusters and polyvalency in abrin-a recognition were comprehensively analyzed by enzyme-linked lectinosorbent binding and inhibition assays. The results indicate that: (i) this toxin prefers oligosaccharides having alpha-anomer of galactose (Gal) at the non-reducing terminal than the corresponding beta-anomer; (ii) Galalpha1-3Galalpha1- (B(alpha)), Galalpha1-4Gal (E), Galbeta1-3GalNAc (T) and Galbeta1-3/4GlcNAc (I/II) related oligosaccharides were the active glyco-structural units; (iii) tri-antennary II(beta), prepared from N-glycan of asialo fetuin, played a dominant role in recognition; (iv) many high-density polyvalent I(beta)/II(beta) and E(beta) glycotopes enhanced the reactivity; (v) the carbohydrate recognition domain of abrin-a is proposed to be a combination of a small cavity type of Gal as major site and a groove type of additional one to tetrasaccharides as subsites with a preference of alpha1-3/4/6Gal, beta1-3GalNAc, beta1-3/4/6GlcNAc, beta1-4/6Glc, beta1-3DAra and beta1-4Man as subterminal sugars; (vi) size of the carbohydrate recognition domain may be as large enough to accommodate a linear pentasaccharide and complementary to Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc (gailipenta) sequence. A comparison of the recognition factors and combining sites of abrin-a with ricin, another highly toxic lectin, was also performed to further understand the differences in recognition factors between these two type 2 RIPs.
    [Abstract] [Full Text] [Related] [New Search]