These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The human alpha11 integrin promoter drives fibroblast-restricted expression in vivo and is regulated by TGF-beta1 in a Smad- and Sp1-dependent manner.
    Author: Lu N, Carracedo S, Ranta J, Heuchel R, Soininen R, Gullberg D.
    Journal: Matrix Biol; 2010 Apr; 29(3):166-76. PubMed ID: 19913614.
    Abstract:
    Integrin alpha11beta1 is expressed by ectomesenchymally- and mesodermally-derived fibroblasts and is the major collagen receptor on embryonic fibroblasts. We have previously characterized a 3kb human alpha11 promoter region in vitro. In the current study we generated promoter-LacZ reporter transgenic mice to examine the ability of the 3kb alpha11 promoter to drive tissue-specific expression also in vivo. Our data show that the 3 kb alpha11 promoter contains most of the regulatory elements that direct ectomesenchymal and mesodermal fibroblast-specific expression. Not much is known about integrin alpha11 regulation by TGF-beta family members and the potential role of alpha11 in TGF-beta1 driven processes such as fibrosis and wound contraction. In the current study we show that TGF-beta1 induces alpha11 transcription in the fibrosarcoma cell line HT1080 as well as in primary fibroblasts. Co-transfection of an expression plasmid encoding constitutively active ALK5 together with alpha11 promoter-luciferase reporter constructs demonstrated that TGF-beta1 responsive elements are located within the 3kb alpha11 promoter. Serial deletions located TGF-beta1 responsiveness to the proximal promoter (nt -176/+25) as well as to the region extending to nt -330. Transfection and expression of the inhibitory Smad7 in the cells attenuated the TGF-beta1-dependent alpha11 induction both at the RNA and the protein level. Mutation and deletion analyses identified a Smad-binding element, SBE2 (nt -182/-176), as an important Smad3-binding site in this part of the promoter. Further analyses suggested that the Sp1-binding site SBS1 (nt -140/-134) takes part in the responsiveness to TGF-beta1 in a Smad2-dependent manner. In summary, our data confirm that 3kb of the alpha11 promoter is efficient in driving tissue-specific expression in vivo. We also demonstrate that this promoter confers TGF-beta1 responsiveness which appears to rely on both a Smad-binding element at nt -182/-176 and a Sp1-binding site at nt -140/-134. Our data furthermore indicate that additional elements needed for TGF-beta1 responsiveness are located upstream in the -2962/-330 promoter region.
    [Abstract] [Full Text] [Related] [New Search]