These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular Mg(2+) regulates the tight junctional localization of claudin-16 mediated by ERK-dependent phosphorylation. Author: Ikari A, Kinjo K, Atomi K, Sasaki Y, Yamazaki Y, Sugatani J. Journal: Biochim Biophys Acta; 2010 Mar; 1798(3):415-21. PubMed ID: 19914201. Abstract: Claudin-16 is involved in the paracellular reabsorption of Mg(2+) in the thick ascending limb of Henle. Little is known about the mechanism regulating the tight junctional localization of claudin-16. Here, we examined the effect of Mg(2+) deprivation on the distribution and function of claudin-16 using Madin-Darby canine kidney (MDCK) cells expressing FLAG-tagged claudin-16. Mg(2+) deprivation inhibited the localization of claudin-16 at tight junctions, but did not affect the localization of other claudins. Re-addition of Mg(2+) induced the tight junctional localization of claudin-16, which was inhibited by U0126, a MEK inhibitor. Transepithelial permeability to Mg(2+) was also inhibited by U0126. The phosphorylation of ERK was reduced by Mg(2+) deprivation, and recovered by re-addition of Mg(2+). These results suggest that the MEK/ERK-dependent phosphorylation of claudin-16 affects the tight junctional localization and function of claudin-16. Mg(2+) deprivation decreased the phosphothreonine levels of claudin-16. The phosphothreonine levels of T225A and T233A claudin-16 were decreased in the presence of Mg(2+) and these mutants were widely distributed in the plasma membrane. Furthermore, TER and transepithelial Mg(2+) permeability were decreased in the mutants. We suggest that the tight junctional localization of claudin-16 requires a physiological Mg(2+) concentration and the phosphorylation of threonine residues via a MEK/ERK-dependent pathway.[Abstract] [Full Text] [Related] [New Search]