These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro.
    Author: Smith CW, Kishimoto TK, Abbassi O, Hughes B, Rothlein R, McIntire LV, Butcher E, Anderson DC.
    Journal: J Clin Invest; 1991 Feb; 87(2):609-18. PubMed ID: 1991844.
    Abstract:
    Monoclonal antibodies recognizing CD18, CD11a, CD11b, and neutrophil lectin adhesion molecule 1 (LECAM-1), i.e., the human homologue of the murine MEL-14 antigen, were used to assess the relative contribution of these glycoproteins to neutrophil-endothelial adhesion. Under static conditions, the adhesion of neutrophils to IL-1-stimulated human umbilical vein endothelial cell (HUVEC) monolayers was inhibited by antibodies to CD18, CD11a, and the neutrophil LECAM-1, and the effect of combining anti-LECAM-1 and anti-CD11a was almost additive. Under flow at a wall shear stress 1.85 dyn/cm2, a condition where CD18-dependent adhesion is minimal, anti-LECAM-1 inhibited adhesion by greater than 50%. Chemotactic stimulation of neutrophils induced a rapid loss of LECAM-1 from the neutrophil surface, and the level of neutrophil surface LECAM-1 was closely correlated with adhesion under flow. Neutrophils contacting the activated endothelial cells for 30 min lost much of their surface LECAM-1, a phenomenon induced by a soluble factor or factors released into the medium by the stimulated monolayers, and a high percentage migrated through the HUVEC monolayer. This migration was almost completely inhibited by anti-CD18, but was unaffected by antibodies to neutrophil LECAM-1. These results support the concept that LECAM-1 is a neutrophil adhesion molecule that participates in the adherence of unstimulated neutrophils to cytokine-stimulated endothelial cells under conditions of flow, and is then lost from the neutrophil surface coincident with the engagement of CD18-dependent mechanisms leading to transendothelial migration.
    [Abstract] [Full Text] [Related] [New Search]