These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cleavage of a multispanning membrane protein by an intramembrane serine protease. Author: Erez E, Bibi E. Journal: Biochemistry; 2009 Dec 29; 48(51):12314-22. PubMed ID: 19919105. Abstract: All intramembrane proteases are known to cleave membrane proteins with a single transmembrane helix. Such cleavages often release anchored soluble domains, which play a role in physiologically important inter- and intracellular processes. However, in many cases the physiological roles/substrates of intramembrane proteases are not known. It is interesting that no multispanning substrates were identified so far, despite the fact that intramembrane proteases have promiscuous substrate recognition and cleavage capabilities. Here we determined whether, in a synthetic experimental system, intramembrane proteases have the capability to interact with and cleave multispanning membrane proteins. We utilized the Escherichia coli rhomboid GlpG, an intramembrane serine protease, and truncated versions of the E. coli multidrug transporter MdfA as model multispanning membrane proteins. On the basis of in vivo and in vitro studies on the association of GlpG with various MdfA constructs and their cleavage, we conclude that GlpG is able to recognize and cleave truncated forms of MdfA but not the intact protein. We propose that GlpG has the capacity to act on unfolded multispanning membrane proteins, thus providing an incentive for investigating possible physiological consequences.[Abstract] [Full Text] [Related] [New Search]