These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct one-step 18F-labeling of peptides via nucleophilic aromatic substitution.
    Author: Becaud J, Mu L, Karramkam M, Schubiger PA, Ametamey SM, Graham K, Stellfeld T, Lehmann L, Borkowski S, Berndorff D, Dinkelborg L, Srinivasan A, Smits R, Koksch B.
    Journal: Bioconjug Chem; 2009 Dec; 20(12):2254-61. PubMed ID: 19921791.
    Abstract:
    Methods for the radiolabeling molecules of interest with [18F]-fluoride need to be rapid, convenient, and efficient. Numerous [18F]-labeled prosthetic groups, e.g., N-succinimidyl 4 [18F]-fluorobenzoate ([18F]-SFB), 4-azidophenacyl-[18F]-fluoride ([18F]-APF), and 1-(3-(2-[18F]fluoropyridin-3-yloxy)propyl)pyrrole-2,5-dione ([18F]-FpyMe), for conjugating to biomolecules have been developed. As the synthesis of these prosthetic groups usually requires multistep procedures, there is still a need for direct methods for the nucleophilic [18F]-fluorination of biomolecules. We report here on the development of a procedure based on the trimethylammonium (TMA) leaving group attached to an aromatic ring and activated with different electron-withdrawing groups (EWGs). A series of model compounds containing different electron-withdrawing substituents, a trimethylammonium leaving group, and carboxylic functionality for subsequent coupling to peptides were designed and synthesized. The optimal model compound, 2-cyano-4-(methoxycarbonyl)-N,N,N-trimethylbenzenaminium trifluoromethanesulfonate, was converted to carboxylic acid and coupled to peptides. The results of the one-step [18F]-fluorination of tetrapeptides and bombesin peptides show that the direct 18F-labeling of peptides is feasible under mild conditions and in good radiochemical yields.
    [Abstract] [Full Text] [Related] [New Search]