These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Magnitude and rate of mechanical loading of a variety of exercise modes.
    Author: Ebben WP, Fauth ML, Kaufmann CE, Petushek EJ.
    Journal: J Strength Cond Res; 2010 Jan; 24(1):213-7. PubMed ID: 19924011.
    Abstract:
    This study evaluated impulse (I), peak ground reaction forces (GRF), and the rate of force development (RFD) of a variety of exercise modes for the purpose of estimating the magnitude and rate of mechanical loading as a measure of osteogenic potential. Twenty-three subjects participated in this study (mean +/- SD, age 21.2 +/- 1.4 years; body mass 77.8 +/- 16.2 kg). Kinetic data were obtained via a force platform for the test exercises modes, which included walking, jogging, depth jumps, loaded jump squats, and the back squat. Repeated measures analysis of variance revealed significant main effects for I, GRF, and RFD (p < or = 0.001). Bonferroni-adjusted post hoc analyses demonstrated that I and GRF were different between each exercise mode and that RFD was different between all exercise modes except for jogging and the back squat. The depth jump demonstrated the highest GRF and RFD, while the back squat produced the highest I. The jump squat produced the second highest value for all the variables assessed. Thus, the depth jump, jump squat, and back squat appear to offer the greatest potential as osteogenic stimuli and a mixed mode training strategy including exercises such as these is recommended. These results suggest that walking and jogging may have less osteogenic potential.
    [Abstract] [Full Text] [Related] [New Search]