These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. Author: Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J. Journal: ISME J; 2010 Mar; 4(3):377-87. PubMed ID: 19924154. Abstract: The vertebrate digestive tract, including that of humans, is the habitat to trillions of bacteria that are of significant importance to host biology and health. Although these communities are often postulated to have coevolved with their hosts, evidence is lacking, yet critical for our understanding of microbial symbiosis in vertebrates. To gain insight into the evolution of a gut symbiont, we have characterized the population genetic structure and phylogeny of Lactobacillus reuteri strains isolated from six different host species (human, mouse, rat, pig, chicken and turkey) using Amplified-Fragment Length Polymorphism (AFLP) and Multi-Locus Sequence Analysis (MLSA). The results revealed considerable genetic heterogeneity within the L. reuteri population and distinct monophyletic clades reflecting host origin but not provenance. The evolutionary patterns detected indicate a long-term association of L. reuteri lineages with particular vertebrate species and host-driven diversification. Results from a competition experiment in a gnotobiotic mouse model revealed that rodent isolates showed elevated ecological performance, indicating that evolution of L. reuteri lineages was adaptive. These findings provide evidence that some vertebrate gut microbes are not promiscuous, but have diversified into host-adapted lineages by a long-term evolutionary process, allowing the development of a highly specialized symbiosis.[Abstract] [Full Text] [Related] [New Search]