These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.
    Author: Gendel Y, Levi N, Lahav O.
    Journal: Environ Sci Technol; 2009 Nov 01; 43(21):8315-9. PubMed ID: 19924962.
    Abstract:
    A modified pH 1.0 liquid redox sulfur recovery (LRSR) process, based on reactive absorption of H(2)S((g)) in an acidic (pH 1.0) iron solution ([Fe(III)] = 9-8 g L(-1), [Fe(II)] = 1-2 g L(-1)) and electrochemical regeneration of the Fe(III)/Fe(II) catalyst couple, is introduced. Fe(II) was oxidized in a flow-through electrolytic cell by Cl(2(aq)) formed on a Ti/RuO(2) anode. pH 1.0 was applied to retard the potential precipitation of predominantly jarosite group Fe(III) species. At pH 1.0, the presence of chloride ions at [Cl(-)] = 30 g L(-1) allows for both efficient (indirect) electrochemical oxidation of Fe(II) and efficient H(2)S((g)) reactive absorption. The latter observation was hypothesized to be associated with higher concentrations of Fe(III)-Cl complexes that are more highly reactive toward H(2)S((aq)) than are free Fe(III) ions and Fe-SO(4) complexes that otherwise dominate pH 1.0 Fe(III) solutions in the absence of a significant Cl(-) concentration. At the described operational conditions the rate of Fe(II) oxidation in the experimental system was 0.793 kg Fe h(-1) per m(2) anode surface area, at a current efficiency of 58%. Electricity cost within the electrochemical step was approximated at $0.9 per kg H(2)S((g)) removed.
    [Abstract] [Full Text] [Related] [New Search]