These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers.
    Author: Yang J, Zhai Y, Deng Y, Gu D, Li Q, Wu Q, Huang Y, Tu B, Zhao D.
    Journal: J Colloid Interface Sci; 2010 Feb 15; 342(2):579-85. PubMed ID: 19926096.
    Abstract:
    Ordered nitrogen-containing mesoporous carbonaceous polymers have been synthesized via a direct triblock-copolymer-templating process by using soluble, low-molecular-weight urea-phenol-formaldehyde (UPF) resin as an organic precursor and amphiphilic triblock copolymer Pluronic F127 as a template. Characterization using small-angle X-ray scattering (SAXS), N(2) sorption, transmission electron microscopy (TEM), elemental analysis, thermogravimetric analysis (TG), Fourier transform infrared (FTIR), and water adsorption techniques reveals that the obtained nitrogen-containing mesoporous polymers possess ordered structures, high surface areas (385-420 m(2)/g), large pore sizes (3.1-3.6nm) and pore volumes (0.25-0.44cm(3)/g), and high nitrogen content (2.69-2.94%). Various mesostructures, such as two-dimensional (2-D) hexagonal (space group, p6mm) and 3-D body-centered cubic (Im3 m) symmetries, can be obtained by simply adjusting the mass ratio of UPF/F127. The content of nitrogen in the mesoporous polymers can also be easy varied by changing the amount of urea and the reaction time of UPF resin precursors. Compared with the nitrogen-free mesoporous polymer, the obtained mesoporous carbonaceous polymers show a more hydrophilic nature and thus evidently higher water adsorption capacity. The presence of nitrogen groups can also significantly improve the adsorption performance of Fe(III) ions.
    [Abstract] [Full Text] [Related] [New Search]