These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif. Author: Gagnon KT, Zhang X, Qu G, Biswas S, Suryadi J, Brown BA, Maxwell ES. Journal: RNA; 2010 Jan; 16(1):79-90. PubMed ID: 19926724. Abstract: The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C'/D' RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C'/D' RNP despite its inability to bind the K-loop, thus indicating the importance of protein-protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.[Abstract] [Full Text] [Related] [New Search]