These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen enhances nickel tolerance in the purple sulfur bacterium Thiocapsa roseopersicina. Author: Zadvornyy OA, Allen M, Brumfield SK, Varpness Z, Boyd ES, Zorin NA, Serebriakova L, Douglas T, Peters JW. Journal: Environ Sci Technol; 2010 Jan 15; 44(2):834-40. PubMed ID: 19928895. Abstract: A common microbial strategy for detoxifying metals involves redox transformation which often results in metal precipitation and/or immobilization. In the present study, the influence of ionic nickel [Ni(II)] on growth of the purple sulfur bacterium Thiocapsa roseopersicina was investigated. The results suggest that Ni(II) in the bulk medium at micromolar concentrations results in growth inhibition, specifically an increase in the lag phase of growth, a decrease in the specific growth rate, and a decrease in total protein concentration when compared to growth controls containing no added Ni(II). The inhibitory effects of Ni(II) on the growth of T. roseopersicina could be partially overcome by the addition of hydrogen (H(2)) gas. However, the inhibitory effects of Ni(II) on the growth of T. roseopersicina were not alleviated by H(2) in a strain containing deletions in all hydrogenase-encoding genes. Transmission electron micrographs of wild-type T. roseopersicina grown in the presence of Ni(II) and H(2) revealed a significantly greater number of dense nanoparticulates associated with the cells when compared to wild-type cells grown in the absence of H(2) and hydrogenase mutant strains grown in the presence of H(2). X-ray diffraction and vibrating sample magnetometry of the dense nanoparticles indicated the presence of zerovalent Ni, suggesting Ni(II) reduction. Purified T. roseopersicina hyn-encoded hydrogenase catalyzed the formation of zerovalent Ni particles in vitro, suggesting a role for this hydrogenase in Ni(II) reduction in vivo. Collectively, these results suggest a link among H(2) metabolism, Ni(II) tolerance, and Ni(II) reduction in T. roseopersicina .[Abstract] [Full Text] [Related] [New Search]