These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel fast disintegrating tablet fabricated by three-dimensional printing. Author: Yu DG, Branford-White C, Yang YC, Zhu LM, Welbeck EW, Yang XL. Journal: Drug Dev Ind Pharm; 2009 Dec; 35(12):1530-6. PubMed ID: 19929213. Abstract: BACKGROUND: Based on computer-aided models, three-dimensional printing (3DP) technology can exercise local control over the material composition, microstructure, and surface texture during it layer-by-layer manufacturing process to endow the products with special properties. It can be a useful tool in the development of novel solid dosage forms. METHOD: In this study, a novel fast disintegrating tablet (FDT) with loose powders in it was designed and fabricated using 3DP process. The inner powder regions were formed automatically by depositing the binder solutions onto selected regions during the layer-printing processes. RESULTS: Environmental scanning electron microscope images clearly showed that the printed regions were bound together. The particle size was reduced or individual particles could no longer be distinguished. In contrast, the unprinted regions were uncompacted with cracks and fissures among the loose powders. The tablets had a hardness value of 54.5 N/cm(2) and 0.92% mass loss during the friability tests. The disintegration time of the tablets was 21.8 seconds and the wetting time was 51.7 seconds. The in vitro dissolution tests showed that 97.7% acetaminophen was released in the initial 2 min. CONCLUSION: 3DP process is able to offer novel methods for preparing FDTs.[Abstract] [Full Text] [Related] [New Search]