These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 5'-Nucleotidase I from rabbit heart. Author: Yamazaki Y, Truong VL, Lowenstein JM. Journal: Biochemistry; 1991 Feb 12; 30(6):1503-9. PubMed ID: 1993169. Abstract: 5'-Nucleotidase I (N-I) from rabbit heart was purified to homogeneity. After ammonium sulfate precipitation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose, AMP-agarose, and ADP-agarose. The pure enzyme has a specific activity of 318 mumol (mg of protein)-1 min-1. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a subunit molecular weight of 40,000. N-I is activated by ADP but not by ATP, in contrast to the 5'-nucleotidase (N-II) purified by Itoh et al. (1986), which is activated by ATP and, less well, by ADP. N-I displays sigmoidal saturation kinetics in the absence of ADP and hyperbolic kinetics in the presence of ADP. Partially purified N-I was previously shown to prefer AMP over IMP as substrate (Truong et al., 1988); this has been confirmed for pure N-I. Comparison of AMP and ADP concentrations reported to occur in heart with the kinetic behavior of N-I implicates N-I as the enzyme responsible for producing adenosine under conditions leading to a rise in ADP and AMP, such as hypoxia or increased workload. N-I is not activated by the ADP analogue adenosine 5'-methylenediphosphonate (AOPCP) and is only weakly inhibited by relatively high concentrations of AOPCP, in contrast to 5'-nucleotidase from plasma membrane, which is powerfully inhibited by this analogue. N-I shows an absolute dependence on Mg2+ ions. Mn2+ and Co2+ ions can replace Mg2+ ions as activator; Ni2+ and Fe2+ are much less effective, while Ca2+, Ba2+, Zn2+, and Cu2+ fail to activate the enzyme.[Abstract] [Full Text] [Related] [New Search]