These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simulated rainfall study for transport of veterinary antibiotics--mass balance analysis. Author: Kim SC, Davis JG, Truman CC, Ascough JC, Carlson K. Journal: J Hazard Mater; 2010 Mar 15; 175(1-3):836-43. PubMed ID: 19932562. Abstract: Occurrence of human and veterinary antibiotics has been reported in various environmental compartments. Yet, there is a lack of information verifying the transport mechanisms from source to environment, particularly the transport of veterinary antibiotics as a non-point source pollutant. A rainfall simulation study was conducted to address surface runoff as a possible transport mechanism of veterinary antibiotics introduced in the field and mass balance was calculated with supplementary surface and depth soil measurement. Seven veterinary antibiotics that are the most abundantly used in agriculture for therapeutic and non-therapeutic (growth-promotion) purposes were examined in this study, including tetracycline (TC), chlortetracycline (CTC), sulfathiazole (STZ), sulfamethazine (SMZ), erythromycin (ETM), tylosin (TYL), and monensin (MNS). Runoff in aqueous and sediment phases was collected every 5 min for 1h with varied rainfall intensity and additional surface (0-2 cm) and depth (2-30 cm) soil samples were collected after rainfall simulation for mass balance analysis. Quantification of antibiotic concentration in all collected samples was based on solid phase extraction (SPE) followed by measurement with high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). MNS showed the highest concentration in runoff aqueous samples (0.22 mg plot(-1)), while ETM showed the highest concentration in runoff sediment samples (0.08 mg plot(-1)). The highest concentration of each applied antibiotic in surface soil samples occurred at different locations. This result might indicate the mobility of these compounds in surface soil varies due to different physicochemical properties among the antibiotics. Further, the analysis results showed that all of the subject antibiotics had penetrated into the subsurface; yet, no residuals were found for STZ, suggesting this compound might have penetrated even deeper into the soil. These results indicate that aqueous or sediment erosion control might reduce the transport of veterinary antibiotics in the environment.[Abstract] [Full Text] [Related] [New Search]