These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Experimental use of an elastomeric surgical sealant for arterial hemostasis and its long-term tissue response.
    Author: Oda S, Morita S, Tanoue Y, Eto M, Matsuda T, Tominaga R.
    Journal: Interact Cardiovasc Thorac Surg; 2010 Feb; 10(2):258-61. PubMed ID: 19934160.
    Abstract:
    OBJECTIVES: Reliable suture line hemostasis should improve the outcome of aortic surgery. We examined the hemostatic effect and the tissue response of a novel elastomeric surgical sealant. METHODS: Using porcine internal carotid arteries, we performed 16 end-to-end anastomoses with four stitches of simple interrupted sutures under full heparinization. The anastomoses were divided into two groups (eight anastomoses per group). Either novel sealant or fibrin glue was applied. The amount of bleeding was measured during the 30 s period after removing the vascular clamp. In a separate experiment, we applied the novel sealant around the abdominal aorta of rabbits (n=6) to assess the effect of the elastomeric property of the sealant on arterial wall histology. For comparison, we applied cyanoacrylate, which has no elastomeric property (n=6). A histological study was performed three months after the operation. RESULTS: The novel sealant prevented arterial bleeding. The amount of bleeding from the anastomoses applied with novel sealant and fibrin glue was 0.12+/-0.03 g vs. 91.8+/-16.5 g, respectively (P<0.001). Thinning of the rabbit aortic wall was observed in the cyanoacrylate-treated abdominal aorta, whereas no thinning was observed in the novel sealant group. Histological examination revealed neither cell death nor necrosis in the novel sealant group. CONCLUSIONS: The novel sealant effectively prevented arterial bleeding from the anastomosis under full heparinization. In addition, the elastomeric property of the sealant prevented thinning of the aortic wall. The novel sealant may be a promising hemostatic agent for arterial anastomosis.
    [Abstract] [Full Text] [Related] [New Search]