These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A microwell array device with integrated microfluidic components for enhanced single-cell analysis. Author: Lindström S, Mori K, Ohashi T, Andersson-Svahn H. Journal: Electrophoresis; 2009 Dec; 30(24):4166-71. PubMed ID: 19938185. Abstract: Increasing awareness of the importance of cell heterogeneity in many biological and medical contexts is prompting increasing interest in systems that allow single-cell analysis rather than conventional bulk analysis (which provides average values for variables of interest from large numbers of cells). Recently, we presented a microwell chip for long-term, high-throughput single-cell analysis. The chip has proved to be useful for purposes such as screening individual cancer and stem cells for protein/gene markers. However, liquids in the wells can only be added or changed by manually rinsing the chip, or parts of it. This procedure has several well-known drawbacks--including risks of cross-contamination, large dead volumes and laboriousness--but there have been few previous attempts to integrate liquid rinsing/switching channels in "ready-to-use" systems for single-cell analysis. Here we present a microwell system designed (using flow simulations) for single-cell analysis with integrated microfluidic components (microchannels, magnetically driven micropumps and reservoirs) for supplying the cell culture wells with reagents, or rinsing, thus facilitating controlled, directed liquid handling. It can be used totally independently, since tubing is not essential. The practical utility of the integrated system has been demonstrated by culturing endothelial cells in the microwells, and successfully applying live-cell Calcein AM staining. Systems such as this combining high-density microwell chips with microfluidic components have great potential in numerous screening applications, such as exploring the important, but frequently undetected, heterogeneity in drug responses among individual cells.[Abstract] [Full Text] [Related] [New Search]