These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer. Author: Shi J, Liu Z, Jia B, Yu Z, Zhao H, Wang F. Journal: Amino Acids; 2010 Jun; 39(1):111-20. PubMed ID: 19941017. Abstract: In this study, we reported the preparation and evaluation of (177)Lu-DOTA-RGD2, (177)Lu-DOTA-Bz-RGD2 and (177)Lu-DTPA-Bz-RGD2 (RGD2 = E[c(RGDfK)](2)) as a potential therapeutic radiotracers for the treatment of integrin alpha(v)beta(3)-positive tumors. The BALB/c nude mice bearing the U87MG human glioma xenografts were used to evaluate the biodistribution characteristics and excretion kinetics of (177)Lu-DOTA-RGD2, (177)Lu-DOTA-Bz-RGD2 and (177)Lu-DTPA-Bz-RGD2. It was found that there were no major differences in their lipophilicity and biodistribution characteristics, particularly at latter time points. A major advantage of using DTPA-Bz as the bifunctional chelator (BFC) was its high radiolabeling efficiency (fast and high yield radiolabeling) at room temperature. Using DOTA and DOTA-Bz as BFCs, the radiolabeling kinetics was slow, and heating at 100 degrees C and higher DOTA-conjugate concentration were needed for successful (177)Lu-labeling. Therefore, DTPA-Bz is an optimal BFC for routine preparation of (177)Lu-labeled cyclic RGDfK peptides, and (177)Lu-DTPA-Bz-RGD2 is worthy of further investigation for targeted radiotherapy of integrin alpha(v)beta(3)-positive tumors.[Abstract] [Full Text] [Related] [New Search]