These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo and in vitro analysis of the hedamycin polyketide synthase.
    Author: Das A, Khosla C.
    Journal: Chem Biol; 2009 Nov 25; 16(11):1197-207. PubMed ID: 19942143.
    Abstract:
    Hedamycin is an antitumor polyketide antibiotic with unusual biosynthetic features. Earlier sequence analysis of the hedamycin biosynthetic gene cluster implied a role for type I and type II polyketide synthases (PKSs). We demonstrate that the hedamycin minimal PKS can synthesize a dodecaketide backbone. The ketosynthase (KS) subunit of this PKS has specificity for both type I and type II acyl carrier proteins (ACPs) with which it collaborates during chain initiation and chain elongation, respectively. The KS receives a C(6) primer unit from the terminal ACP domain of HedU (a type I PKS protein) directly and subsequently interacts with the ACP domain of HedE (a type II PKS protein) during the process of chain elongation. HedE is a bifunctional protein with both ACP and aromatase activity. Its aromatase domain can modulate the chain length specificity of the minimal PKS. Chain length can also be influenced by HedA, the C-9 ketoreductase. While co-expression of the hedamycin minimal PKS and a chain-initiation module from the R1128 PKS yields an isobutyryl-primed decaketide, the orthologous PKS subunits from the hedamycin gene cluster itself are unable to prime the minimal PKS with a nonacetyl starter unit. Our findings provide new insights into the mechanism of chain initiation and elongation by type II PKSs.
    [Abstract] [Full Text] [Related] [New Search]