These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of different additives with assistance of microwave heating for heavy metal stabilization in electronic industry sludge.
    Author: Jothiramalingam R, Lo SL, Chen CL.
    Journal: Chemosphere; 2010 Jan; 78(5):609-13. PubMed ID: 19945139.
    Abstract:
    Electronic industrial wastewater sludge in Taiwan is normally passed through an acid-extraction process to reclaim most of the copper ions, the remaining residue may still need to be treated by various stabilization technologies using suitable additives. Cement solidification is used as the common method to stabilize the industrial wastewater sludge in Taiwan. However, this method has the disadvantage of an increase in waste volume. In the present study selective additives such as sodium sulfide, barium manganate and different phase of alumina were tested as a possible alternate additive to stabilize the heavy metal ion in the treated solid waste sludge via microwave heating treatment. The effects of additive amount, power of microwave irradiation and reaction time have been studied. Heavy metal leaching capacity is determined by using standard toxicity characteristic leaching procedure test and elemental content in the leachate is analyzed by inductively coupled plasma analysis. Sodium sulfide is effectively stabilizing the leaching copper ion with high selectivity in the presence of microwave irradiation and finally stabilized in the form of copper sulfide, which is a significant reaction to stabilize the copper ion leaching in the waste sludge. Complete stabilization of heavy metal ion and copper ion content (<5mgL(-1)) in industrial sludge is achieved by heating the microwave treated barium manganate and alumina additives by adopting suitable reaction conditions. Hybrid microwave and conventional heating process with minor amount of additive providing the efficient heavy metal stabilization for treated electronic industry waste sludge.
    [Abstract] [Full Text] [Related] [New Search]