These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cell lines derived from a medaka radiation-sensitive mutant have defects in DNA double-strand break responses.
    Author: Hidaka M, Oda S, Kuwahara Y, Fukumoto M, Mitani H.
    Journal: J Radiat Res; 2010; 51(2):165-71. PubMed ID: 19952493.
    Abstract:
    It was reported that the radiation-sensitive Medaka mutant "ric1" has a defect in the repair of DNA double-strand breaks (DSBs) induced by gamma-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to gamma-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after gamma-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (gammaH2AX) foci were formed after gamma-irradiation, however, the gammaH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of gammaH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro.
    [Abstract] [Full Text] [Related] [New Search]