These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis.
    Author: Song R, Spera M, Garrett C, Yosypiv IV.
    Journal: Mech Dev; 2010; 127(1-2):21-7. PubMed ID: 19961928.
    Abstract:
    The renin-angiotensin system (RAS) plays a critical role in ureteric bud (UB) and kidney morphogenesis. Mutations in the genes encoding components of the RAS cause a spectrum of congenital abnormalities of the kidney and urinary tract (CAKUT). However, the mechanisms by which aberrations in the RAS result in CAKUT are poorly understood. Given that c-Ret receptor tyrosine kinase (RTK) is a major inducer of UB branching, the present study tested the hypothesis that angiotensin (Ang) II-induced activation of c-Ret plays a critical role in UB branching morphogenesis. E12.5 mice metanephroi were grown for 24h in the presence or absence of Ang II, Ang II AT(1) receptor (AT(1)R) antagonist candesartan, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or ERK1/2 inhibitor PD98059. Ang II increased the number of UB tips (61+/-2.4 vs. 45+/-4.3, p<0.05) compared with control. Quantitative RT-PCR analysis demonstrated that Ang II increased c-Ret mRNA levels in the kidney (1.35+/-0.05 vs. 1.0+/-0, p<0.01) and in the UB cells (1.28+/-0.04 vs. 1.0+/-0, p<0.01) compared to control. This was accompanied by increased Tyr(1062)Ret phosphorylation by Ang II (5.5+/-0.9 vs. 1.8+/-0.4 relative units, p<0.05). In addition, treatment of UB cells with Ang II (10(-5)M) increased phosphorylation of Akt compared to control (213+/-16 vs. 100+/-20%, p<0.05). In contrast, treatment of metanephroi or UB cells with candesartan decreased c-Ret mRNA levels (0.72+/-0.06 vs. 1.0+/-0, p<0.01; 0.68+/-0.07 vs. 1.0+/-0, p<0.05, respectively) compared with control. Ang II-induced UB branching was abrogated by LY294002 (24+/-2.6 vs. 37+/-3.0, p<0.05) or PD98059 (33+/-2.0 vs. 48+/-2.2, p<0.01). These data demonstrate that Ang II-induced UB branching depends on activation of Akt and ERK1/2. We conclude that cross-talk between the RAS and c-Ret signaling plays an important role in the development of the renal collecting system.
    [Abstract] [Full Text] [Related] [New Search]