These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transport of phenylethylamine at intestinal epithelial (Caco-2) cells: mechanism and substrate specificity. Author: Fischer W, Neubert RH, Brandsch M. Journal: Eur J Pharm Biopharm; 2010 Feb; 74(2):281-9. PubMed ID: 19962438. Abstract: This study was performed to characterize the intestinal transport of beta-phenylethylamine (PEA). Uptake of [(14)C]PEA into Caco-2 cells was Na(+)-independent but strongly stimulated by an outside directed H(+) gradient. At extracellular pH 7.5, the concentration-dependent uptake of PEA was saturable with kinetic parameters of 2.6mM (K(t)) and 96.2nmol/min per mg of protein (V(max)). Several biogenic amines such as harmaline and N-methylphenylethylamine as well as cationic drugs such as phenelzine, tranylcypromine, d,l-amphetamine, methadone, chlorphenamine, diphenhydramine and promethazine strongly inhibited the [(14)C]PEA uptake with K(i) values around 1mM. Tetraethylammonium, N-methyl-4-phenylpyridinium and choline had no effect. We also studied the bidirectional transepithelial transport of [(14)C]PEA at cell monolayers cultured on permeable filters. Net transepithelial flux of [(14)C]PEA from apical-to-basolateral side exceeded basolateral-to-apical flux 5-fold. We conclude that PEA is transported into Caco-2 cells by a highly active, saturable, H(+)-dependent (antiport) process. The transport characteristics do not correspond to those of the known carriers for organic cations of the SLC22, SLC44, SLC47 and other families.[Abstract] [Full Text] [Related] [New Search]