These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Behaviour of phospholipase modified-HDL towards cultured hepatocytes. II. Increased cell cholesterol storage and bile acid synthesis.
    Author: Collet X, Vieu C, Chap H, Perret BP.
    Journal: Biochim Biophys Acta; 1991 Jan 28; 1081(2):211-9. PubMed ID: 1998740.
    Abstract:
    Human total HDL (hydrated density 1.070-1.210), HDL2 (1.070-1.125), HDL3 (1.125-1.210) or HDL separated by heparin affinity chromatography were treated with or without purified phospholipase A2 from Crotalus adamanteus. Control and treated HDL were reisolated and were then incubated with cultured hepatocytes. 1. Mass measurements evidenced a time-dependent cholesterol enrichment in hepatocytes cultured in the absence of lipoproteins. Addition of HDL2 still enhanced by 25% the cell cholesterol content and down-regulated endogenous sterol synthesis in similar proportions. Conversely, HDL3 slightly decreased the amount of free cholesterol in hepatocytes (-12%). 2. Incubations with phospholipase A2-treated HDL resulted in a 35%-50% increase of both the cellular cholesterol esterification and the cholesterylester accumulation, when compared to cells cultured in the presence of control-HDL. This effect was observed with HDL2, HDL3 and combining the data with all subfractions. 3. Cultured hepatocytes secreted cholic and beta-muricholic acids as major bile acids and HDL2 showed a tendency to stimulate their secretion. Phospholipase treatment of HDL again induced an increased production by hepatocytes of those two bile acids. Thus, whereas HDL2 and HDL3 display different behaviours with respect to cell cholesterol content, neosynthesis and bile acid secretion, their modifications by phospholipases always orientate the cell sterol metabolism in the same direction: increased cholesterylester accumulation and bile acid production.
    [Abstract] [Full Text] [Related] [New Search]