These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conversion of pig pancreas phospholipase A2 by protein engineering into enzyme active against Escherichia coli treated with the bactericidal/permeability-increasing protein.
    Author: Weiss J, Wright G, Bekkers AC, van den Bergh CJ, Verheij HM.
    Journal: J Biol Chem; 1991 Mar 05; 266(7):4162-7. PubMed ID: 1999411.
    Abstract:
    Phospholipases A2 (PLA-2) are conserved enzymes that can vary widely in their activity toward certain biological targets. Activity of PLA-2 toward Escherichia coli treated with the bactericidal/permeability-increasing protein (BPI) of granulocytes has been detected only in "Group II" PLA-2 (lacking Cys11-Cys77) and correlates with overall basicity and the presence of a cluster of basic amino acids within a variable surface region near the NH2 terminus (including residues 6, 7, 10, 11, and 15). We now show that of five pancreatic PLA-2 ("Group I" enzymes) tested from different species of mammals, the human enzyme that is most basic both globally (pI 8.7) and locally (Arg-6, Lys-7, and Lys-10) is active toward BPI-treated E. coli (approximately 1-2% activity of the most active Group II PLA-2) whereas the other four PLA-2 are essentially inactive (less than 0.1%). The cDNA of the pig pancreatic PLA-2 (pI 6.4; Arg-6, Ser-7, Lys-10) has been modified by site-specific mutagenesis and the wild-type and mutant PLA-2 have been expressed in and purified from either E. coli or Saccharomyces cerevisiae to determine more precisely the structural determinants of PLA-2 activity toward BPI-treated E. coli. The single substitution of lysine (or arginine) for Ser-7 transformed the pig pancreatic PLA-2 into an active enzyme toward BPI-treated E. coli possessing 25-50% the activity of the human PLA-2. Additional modifications to increase global basicity (increase in net charge up to +4) caused a further (up to 2-fold) increase in activity. All mutant PLA-2 still containing Ser-7 possessed little or no activity toward BPI-treated E. coli. Changes in activity toward BPI-treated E. coli were accompanied by parallel changes in enzyme binding to this target. In contrast, substitution of lysine (or arginine) for Ser-7 caused little or no alteration of enzyme activity toward either autoclaved E. coli or egg yolk lipoproteins indicating no major effects on the catalytic properties of the PLA-2. This study demonstrates directly the role of NH2-terminal basic residues in the action of PLA-2 on BPI-treated E. coli and suggests that these properties mainly facilitate PLA-2 binding to this biological target.
    [Abstract] [Full Text] [Related] [New Search]