These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The human "Treg MLR": immune monitoring for FOXP3+ T regulatory cell generation.
    Author: Levitsky J, Miller J, Leventhal J, Huang X, Flaa C, Wang E, Tambur A, Burt RK, Gallon L, Mathew JM.
    Journal: Transplantation; 2009 Dec 15; 88(11):1303-11. PubMed ID: 19996930.
    Abstract:
    BACKGROUND: Controversy exists about the conditions effecting the development of forkhead/winghead helix transcription factor P3 (FOXP3) expressing T cells and their relevance in transplant recipients. METHODS: We generated carboxy-fluorescein diacetate succinimidyl ester-labeled CD4+CD25 high FOXP3+ cells in mixed lymphocyte reactions (MLRs) ("the Treg MLR"), with varying human leukocyte antigen (HLA) disparities and cell components. Five color flow cytometry and H-thymidine uptakes were the readouts. RESULTS: (1) Despite lower stimulation indices (SIs) than two DR-mismatched MLRs, 2 DR-matched MLRs generated more than twofold higher percentages when gating on proliferating CD4+CD25 high FOXP3+ cells; (2) Even with low numbers of proliferating cells, autologous and HLA identical MLRs generated the highest FOXP3+:FOXP3- cell ratios; (3) Elimination of either non-CD3+ responding cells (resulting in "direct presentation" only) or responding CD25+ (Treg generating) cells increased the SI but inhibited proliferating CD4+CD25 high FOXP3+ cell development; (4) MLR-generated CD4+CD25 high FOXP3+ cells added as third components specifically inhibited the same freshly set MLR SI and caused recruitment of new CD4+CD25 high FOXP3+ cells. As an example of the "Treg MLR" immune monitoring potential, addition of third component peripheral blood mononuclear cell containing high percentages of CD4+CD25 high FOXP3+ cells from an HLA identical kidney transplant recipient (in a tolerance protocol) caused donor-specific Treg MLR inhibition or recruitment. This was similar to the third component MLR Tregs generated entirely in vitro. CONCLUSION: In the Treg MLR, the generation of CD4+CD25 high FOXP3+ cells is more pronounced in the context of self-recognition (HLA matching, indirect presentation). These cells can be assayed for MLR inhibitory and Treg recruitment functions, so as to immunologically monitor the allospecific regulation after transplantation.
    [Abstract] [Full Text] [Related] [New Search]