These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of diet composition and trophic structure on mercury bioaccumulation in temperate flatfishes.
    Author: Payne EJ, Taylor DL.
    Journal: Arch Environ Contam Toxicol; 2010 Feb; 58(2):431-43. PubMed ID: 19997909.
    Abstract:
    The summer flounder Paralichthys dentatus and winter flounder Pseudopleuronectes americanus support valuable fisheries along the northeastern United States. The importance of these flatfish as a human dietary resource indicates they are potential sources of mercury (Hg) to fish-consuming citizens. In this study, summer flounder (SF) and winter flounder (WF) were collected from the Narragansett Bay (Rhode Island, USA) and were measured for total Hg burden in whole-body or dorsal muscle tissue. Interspecies differences in Hg contamination were analyzed relative to flounder body size, age, and Hg content of preferred prey. Stable isotope signatures were also used to elucidate the effect of trophic processes on Hg accumulation in the estuarine food web. The mean Hg content of SF exceeded concentrations measured in WF across multiple life-history stages (0.039-0.100 and 0.016-0.029 mg Hg/kg wet weight for SF and WF, respectively), and observed values for both species were lower than the US Environmental Protection Agency regulatory threshold of 0.3 mg Hg/kg wet weight. Total Hg concentrations were also positively correlated with flounder age and length, verifying that both flatfish bioaccumulate Hg. SF accumulate Hg at an accelerated rate, however, owing to this species consuming Hg-enriched prey (teleosts, squid, and macrocrustaceans; mean Hg content = 0.023 mg Hg/kg wet weight), whereas WF feed on prey with low Hg levels (amphipods and polychaetes; mean Hg content = 0.013 mg Hg/kg wet weight). The positive correlation observed between mean biota Hg content and stable nitrogen (delta(15)N) isotope signatures further indicates that Hg is trophically transferred through the food web, and higher trophic level organisms (i.e., enriched delta(15)N) have increased Hg concentrations. Therefore, results from this study suggest that dietary preference and trophic structure are the main factors affecting Hg bioaccumulation in the estuary. Total Hg concentrations of flatfish from the Narragansett Bay, however, do not necessarily reflect coastwide contamination patterns. This reinforces the importance of having research conducted at sufficiently small spatial scales, including the local assessment of Hg contamination for the purpose of issuing state consumption advisories.
    [Abstract] [Full Text] [Related] [New Search]