These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CHF1/Hey2 promotes physiological hypertrophy in response to pressure overload through selective repression and activation of specific transcriptional pathways. Author: Yu M, Liu Y, Xiang F, Li Y, Cullen D, Liao R, Beyer RP, Bammler TK, Chin MT. Journal: OMICS; 2009 Dec; 13(6):501-11. PubMed ID: 20001863. Abstract: We have previously found that CHF1/Hey2 prevents the development of phenylephrine-induced cardiac hypertrophy. To determine the role of CHF1/Hey2 in pressure overload hypertrophy, we performed ascending aortic banding on wild-type and transgenic mice overexpressing CHF1/Hey2 in the myocardium. We found that both wild-type and transgenic mice developed increased ventricular weight to body weight ratios 1 week after aortic banding. Wild-type mice also developed decreased fractional shortening after 1 week when compared to preoperative echocardiograms and sham-operated controls. Transgenic mice, in comparison, demonstrated preserved fractional shortening. Histological examination of explanted heart tissue demonstrated extensive fibrosis in wild-type hearts, but minimal fibrosis in transgenic hearts. TUNEL staining demonstrated increased apoptosis in the wild-type hearts but not in the transgenic hearts. Exposure of cultured neonatal myocytes from wild-type and transgenic animals to hydrogen peroxide, a potent inducer of apoptosis, demonstrated increased apoptosis in the wild-type cells. Gene Set Analysis of microarray data from wild-type and transgenic hearts 1 week after banding revealed suppression and activation of multiple pathways involving apoptosis, cell signaling, and biosynthesis. These findings demonstrate that CHF1/Hey2 promotes physiological over pathological hypertrophy through suppression of apoptosis and regulation of multiple transcriptional pathways. These findings also suggest that CHF1/Hey2 and its downstream pathways provide a variety of targets for novel heart failure drug discovery, and that genetic polymorphisms in CHF1/Hey2 may affect susceptibility to hypertrophy and heart failure.[Abstract] [Full Text] [Related] [New Search]