These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogram b-wave amplitude from the isolated superfused vertebrate retina. Author: Siapich SA, Banat M, Albanna W, Hescheler J, Lüke M, Schneider T. Journal: Acta Ophthalmol; 2009 Nov; 87(8):854-65. PubMed ID: 20002018. Abstract: PURPOSE: NiCl(2) (15 microM) stimulates the electroretinogram (ERG) b-wave amplitude of vertebrate retina up to 1.5-fold through its blocking of E/R-type voltage-gated Ca(2+) channels. Assuming that such an increase is mediated by blocking the release of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) via ionotropic GABA receptors, we tested the effect of both GABA itself and GABA-receptor antagonists such as (-)bicuculline (1.51-fold increase) and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA; 1.46-fold increase) on the b-wave amplitude. METHODS: Recording of the transretinal potentials from the isolated bovine retina. RESULTS: GABA (100 microM) reduced the b-wave amplitude only when NiCl(2) (15 microM) was applied first. Each antagonist applied on its own stimulated the b-wave amplitude only partially: subsequent NiCl(2) superfusion caused a small but additional increase, leading to a 1.69- and a 1.88-fold total increase of the amplitude by Ni(2+) plus (-)bicuculline or Ni(2+) plus TPMPA, respectively. Only the application of both antagonists in combination, before superfusing low NiCl(2) (15 microM), completely prevented subsequent stimulation by NiCl(2) with a similar 1.90-fold total increase of b-wave amplitude. Those retina segments that did not respond to NiCl(2) could not be stimulated by (-)bicuculline and vice versa. CONCLUSION: The stimulatory effect of NiCl(2) on the ERG b-wave amplitude is mainly, but not only, mediated by a NiCl(2)-sensitive, Ca(v)2.3-triggered GABA release acting through ionotropic GABA-A and GABA-C receptors.[Abstract] [Full Text] [Related] [New Search]