These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Author: Snider JL, Oosterhuis DM, Kawakami EM. Journal: Physiol Plant; 2010 Mar; 138(3):268-77. PubMed ID: 20002327. Abstract: Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance is lacking. We investigated the hypothesis that genotypic differences in source leaf photosynthetic thermostability would be dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. To test this hypothesis, thermosensitive (cv. ST4554) and reportedly thermotolerant (cv. VH260) G. hirsutum plants were exposed to control (30/20 degrees C) or high-day temperature (38/20 degrees C) conditions during flowering and source leaf gas exchange, chlorophyll content and maximum photochemical efficiency (F(v)/F(m)) were measured for each treatment. The relationship between source leaf thermostability and prestress antioxidant capacity was quantified by monitoring the actual quantum yield response of photosystem II (PSII) (Phi(PSII)) to a range of temperatures for both cultivars grown under the control temperature regime and measuring antioxidant enzyme activity for those same leaves. VH260 was more thermotolerant than ST4554 as evidenced by photosynthesis and F(v)/F(m) being significantly lower under high temperature for ST4554 but not VH260. Under identical growth conditions, VH260 had significantly higher optimal and threshold temperatures for Phi(PSII) and glutathione reductase (GR; EC 1.8.1.7) activity than ST4554, and innate threshold temperature was dependent upon endogenous GR and superoxide dismutase (SOD; EC 1.15.1.1) activity. We conclude that maintaining a sufficient antioxidant enzyme pool prior to heat stress is an innate mechanism for coping with rapid leaf temperature increases that commonly occur under field conditions.[Abstract] [Full Text] [Related] [New Search]