These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ethanol alters the expressions of c-Fos and myelin basic protein in differentiating oligodendrocytes. Author: Bichenkov E, Ellingson JS. Journal: Alcohol; 2009 Dec; 43(8):627-34. PubMed ID: 20004340. Abstract: Myelination occurs in the central nervous system of the human fetus, adolescents, and young adults. Ethanol interferes with myelination in part by altering the composition of the myelin sheath. Here we show that ethanol also affected the expression of the transcription factor c-Fos in differentiating oligodendrocytes (OLGs). Central glial-4 OLG progenitors were induced to differentiate in the absence and presence of 100 mM ethanol, and ethanol-caused changes in the levels of c-Fos and myelin basic protein (MBP) were determined by Western blot analysis at selected developmental stages. The relatively high c-Fos level in progenitors did not immediately decrease to a low level at the onset of differentiation but displayed a downregulation at a later developmental stage. Ethanol delayed the developmental c-Fos downregulation maintaining c-Fos at a 45% higher level at 2 days of differentiation (DoD). Ethanol also decreased the rate of the burst of MBP expression that occurred between 1 and 2 DoD, reducing the MBP level by 47% at 2 DoD. The ethanol-caused delays of c-Fos downregulation and MBP upregulation were both blocked by the protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIM). Likewise, treatment of OLGs with a low 5-nM concentration of the PKC activator by 12-O-tetradecanoylphorbol-13-acetate mimicked the ethanol effects on the expression of both proteins, effects that were also counteracted by BIM. The results indicate that ethanol-caused delays of the stage-specific c-Fos downregulation and the inhibition of MBP expression both occur through a PKC-mediated mechanism. The ethanol-caused delay in c-Fos downregulation may disrupt normal timing for expression of genes involved in OLG differentiation, and the inhibited MBP expression may alter the myelin sheath composition.[Abstract] [Full Text] [Related] [New Search]