These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model.
    Author: Tasso R, Fais F, Reverberi D, Tortelli F, Cancedda R.
    Journal: Biomaterials; 2010 Mar; 31(8):2121-9. PubMed ID: 20004968.
    Abstract:
    Angiogenesis plays a central role in bone regeneration, not only for the transport of nutrients, but also for locally directing skeletal stem/progenitor cells. Following ectopic implantation of porous ceramic cubes seeded with mouse GFP-labeled mesenchymal stem cells (MSC) into syngenic mice, we investigated the cascade of events leading to bone formation. Implants harvested at different times were enzymatically digested to generate single-cell suspensions. Recovered cells were sorted to separate GFP+implanted MSC and host recruited GFP- cells. We isolated and characterized two different waves of cells, migrating from the host to the MSC-seeded ceramic. The first migrated cell population, recovered 7 days after implantation, was enriched in CD31+endothelial progenitors, while the second one, recruited at day 11, was enriched in CD146+pericyte-like cells. Both populations were not recruited into the scaffold following implantation of a non-MSC seeded ceramic. Pericyte-like cell mobilization was dependent on the first migrated endothelial cell population. Pericyte-like cells retained properties distinctive of stem cells, such as capacity of performing a high number of in vitro cell divisions and showed an osteogenic potential. Studies on the cross talk between implanted exogenous MSC and resident stem/progenitor cells could open new perspectives for future clinical applications.
    [Abstract] [Full Text] [Related] [New Search]