These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Parstatin(1-26): the putative signal peptide of protease-activated receptor 1 confers potent protection from myocardial ischemia-reperfusion injury.
    Author: Routhu KV, Tsopanoglou NE, Strande JL.
    Journal: J Pharmacol Exp Ther; 2010 Mar; 332(3):898-905. PubMed ID: 20008957.
    Abstract:
    Parstatin, the N-terminal 41-amino-acid peptide cleaved by thrombin from the protease-activated receptor 1, protects against rat myocardial ischemia and reperfusion injury. In this study, we determined that the parstatin fragment 1-26, the putative signal peptide of protease-activated receptor 1, contains the functional domain of parstatin. We assessed a synthesized parstatin(1-26) peptide in an in vivo rat model of myocardial regional ischemia-reperfusion injury (n = 6/group). Infarct size in control rat hearts was 58 +/- 1% area at risk. Parstatin(1-26) was able to reduce infarct size to 13 +/- 1% (P < 0.001) and 22 +/- 1% area at risk (P < 0.01) when given before or after reperfusion. The infarct-sparing effects of parstatin(1-26) were abolished by inhibition of G(i) proteins (pertussis toxin), phosphoinositide 3-kinase/Akt (wortmannin), nitric-oxide synthase (NOS; N(G)-monomethyl-l-arginine), soluble guanylyl cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], and sarcolemmal and mitochondrial K(ATP) channels [glibenclamide, 5-hydroxydecanoic acid, and sodium (5-(2-(5-chloro-2-methoxybenzamido)ethyl)-2-methoxyphenylsulfonyl) (methylcarbamothioyl)amide (HMR 1098)]. Parstatin(1-26) cardioprotection was also abolished by atractyloside, a mitochondrial permeability transition pore (mPTP) opener. The inhibitors and opener alone had no effect on infarct size. Furthermore, preischemic treatment with parstatin(1-26) increased Akt and endothelial NOS phosphorylation at the time of reperfusion. After a 120-min reperfusion, parstatin(1-26) increased nitric oxide levels (12 +/- 0.4 to 17 +/- 0.9 mmol/g tissue) and cyclic GMP levels (87 +/- 21 to 395 +/- 36 pmol/g tissue). Parstatin(1-26) treatment either before or after ischemia results in an extremely efficacious protection against ischemia-reperfusion injury that depends on a G(i) protein-mediated pathway involving mPTP, the end effector of the preconditioning pathway. This suggests that parstatin(1-26) has a potential therapeutic role in the treatment of ischemia and reperfusion injury.
    [Abstract] [Full Text] [Related] [New Search]