These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct. Author: Black K, Jones AC, Alexandrou I, Heys PN, Chalker PR. Journal: Nanotechnology; 2010 Jan 29; 21(4):045701. PubMed ID: 20009167. Abstract: The optical properties of zinc oxide nanowires are critically influenced by the growth process. Herein, we describe a metal-organic chemical vapour deposition (MOCVD) process for the growth of ZnO nanowires with improved optical properties. A tetrahydrofuran adduct is used to control the reactivity of dimethylzinc to enable this. Vertically aligned zinc oxide nanowires have been grown on Si(111) substrates by liquid injection MOCVD, using a solution of [Me(2)Zn(tetrahydrofuran)] in the presence of oxygen. The ZnO morphology becomes nanowire-like in a narrow temperature range centred about 500 degrees C. Above and below this temperature range, the ZnO is deposited in the form of polycrystalline films. The ZnO nanowires grow from a polycrystalline nucleation layer, with the (0002) c-axis parallel to the Si[111] substrate orientation. High-resolution electron microscopy reveals a highly crystalline nanowire microstructure. Resonance enhanced ultraviolet Raman spectroscopy shows that the ratio of first- and second-order longitudinal optic modes is commensurate with electron-phonon coupling effects observed previously in ZnO nanostructures. Photoluminescence exhibits intense near band-edge emission with a full width at half-maximum of 110 meV at room temperature and shows negligible defect-related visible emission.[Abstract] [Full Text] [Related] [New Search]