These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of brain renin-angiotensin system on renal sympathetic and cardiac baroreflexes in conscious rabbits.
    Author: Dorward PK, Rudd CD.
    Journal: Am J Physiol; 1991 Mar; 260(3 Pt 2):H770-8. PubMed ID: 2000972.
    Abstract:
    The role of the brain renin-angiotensin system (RAS) in the baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) was studied in conscious rabbits. RSNA and HR were recorded during slow ramp changes in mean arterial pressure (MAP) before and after intraventricular infusion of 1) angiotensin II (ANG II), 2) ANG II receptor antagonist, [Sar1,Ile8]ANG II, or 3) converting enzyme inhibitor (CEI, enalaprilat). Central ANG II increased resting MAP and RSNA by 10.6 +/- 0.9 mmHg and 21 +/- 7%, respectively, but did not alter HR. There was a marked increase of 107 +/- 15% in the maximum RSNA evoked by slowly lowering MAP. In contrast, maximum reflex tachycardia was only modestly elevated, and baroreflex inhibition of RSNA and HR during MAP rises was unaffected. Central [Sar1,Ile8]ANG II had no effect on RSNA or HR, either at rest or during baroreflex responses, while CEI slightly enhanced maximal reflex responses. Thus exogenous ANG II causes a powerful excitation of renal sympathetic motoneurons, the magnitude of which is revealed when tonic baroreceptor inhibition is removed during transient pressure falls. However, in quietly resting conscious rabbits, we found no evidence for a tonic influence of endogenous ANG II on these neurons, and the physiological stimuli required for their activation by the brain RAS remain to be found.
    [Abstract] [Full Text] [Related] [New Search]