These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Author: Sasaki M, Jojima T, Inui M, Yukawa H. Journal: Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280. Abstract: Wild-type Corynebacterium glutamicum produced 0.6 g l(-1) xylitol from xylose at a productivity of 0.01 g l(-1) h(-1) under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l(-1) xylitol at 3.1 g l(-1) h(-1). To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTS(fru)) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l(-1) xylitol at 7.9 g l(-1) h(-1), representing the highest bacterial xylitol productivity reported to date.[Abstract] [Full Text] [Related] [New Search]