These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regioselective lipase-catalyzed synthesis of 3-o-acyl derivatives of resveratrol and study of their antioxidant properties. Author: Torres P, Poveda A, Jimenez-Barbero J, Ballesteros A, Plou FJ. Journal: J Agric Food Chem; 2010 Jan 27; 58(2):807-13. PubMed ID: 20017485. Abstract: One of the approaches to increasing the bioavailability of resveratrol is to protect its 3-OH phenolic group. In this work, regioselective acylation of resveratrol at 3-OH was achieved by transesterification with vinyl acetate catalyzed by immobilized lipase from Alcaligenes sp. (lipase QLG). The maximum yield of 3-O-acetylresveratrol was approximately 75%, as the lipase also catalyzes its further acetylation affording the diester 3,4'-di-O-acetylresveratrol and finally the peracetylated derivative. Long saturated and unsaturated fatty acid vinyl esters were also effective as acyl donors with similar regioselectivity. In contrast, lipase B from Candida antarctica catalyzes the acylation of the phenolic group 4'-OH with 80% yield and negligible formation of higher esters. The analysis of the antioxidant properties showed that the Trolox equivalent antioxidant capability (TEAC) values for the acetyl and stearoyl derivatives at 3-OH were, respectively, 40% and 25% referred to resveratrol. The addition of an acyl chain in the 3-OH position caused a higher loss of activity compared with that at the 4'-OH.[Abstract] [Full Text] [Related] [New Search]