These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes.
    Author: Ryu J, Kim HS, Hahn HT, Lashmore D.
    Journal: Biosens Bioelectron; 2010 Mar 15; 25(7):1603-8. PubMed ID: 20022482.
    Abstract:
    A novel method using intense pulsed light (IPL) for the metal nano-island formation on carbon nanotube (CNT) was introduced. The IPL-induced photothermal dewetting process improved platinum (Pt) catalyst utilization by transforming nano-islands from Pt film on CNT and increasing the surface area for the subsequent sputtering. The irradiation of high intensity of light on the Pt film causes surface-energy-driven diffusion of Pt atoms and forms the array of nano-islands on CNT. The thickness of Pt film can change the size of nano-islands. Cyclic voltammetry showed a dramatically improved glucose oxidation at the IPL morphology modified Pt-CNT electrode compared to the Pt sputtered CNT electrode without IPL irradiation. The power densities of glucose/air biofuel cell based on the morphology modified Pt-CNT electrode and the as-sputtered Pt-CNT electrode were 0.768 microW/cm(2) and 0.178 microW/cm(2), respectively. The biofuel cell based on morphology modified Pt-CNT electrode showed highly stable output in long-term performance. The power density dropped 14.1% in 30 days. Efforts are underway to improve the interface transfer to achieve higher potential and current output.
    [Abstract] [Full Text] [Related] [New Search]