These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Author: Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Journal: Acta Biomater; 2010 Jun; 6(6):1968-77. PubMed ID: 20025999. Abstract: Injectable hydrogels based on hyaluronic acid (HA) and poly(ethylene glycol) (PEG) were designed as biodegradable matrices for cartilage tissue engineering. Solutions of HA conjugates containing thiol functional groups (HA-SH) and PEG vinylsulfone (PEG-VS) macromers were cross-linked via Michael addition to form a three-dimensional network under physiological conditions. Gelation times varied from 14min to less than 1min, depending on the molecular weights of HA-SH and PEG-VS, degree of substitution (DS) of HA-SH and total polymer concentration. When the polymer concentration was increased from 2% to 6% (w/v) in the presence of 100Uml(-1) hyaluronidase the degradation time increased from 3 to 15days. Hydrogels with a homogeneous distribution of cells were obtained when chondrocytes were mixed with the precursor solutions. Culturing cell-hydrogel constructs prepared from HA185k-SH with a DS of 28 and cross-linked with PEG5k-4VS for 3weeks in vitro revealed that the cells were viable and that cell division took place. Gel-cell matrices degraded in approximately 3weeks, as shown by a significant decrease in dry gel mass. At day 21 glycosaminoglycans and collagen type II were found to have accumulated in hydrogels. These results indicate that these injectable hydrogels have a high potential for cartilage tissue engineering.[Abstract] [Full Text] [Related] [New Search]