These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Theoretical study of unimolecular decomposition of catechol.
    Author: Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC.
    Journal: J Phys Chem A; 2010 Jan 21; 114(2):1060-7. PubMed ID: 20028002.
    Abstract:
    This study develops the reaction pathway map for the unimolecular decomposition of catechol, a model compound for various structural entities present in biomass, coal, and wood. Reaction rate constants at the high-pressure limit are calculated for the various possible initiation channels. It is found that catechol decomposition is initiated dominantly via hydroxyl H migration to a neighboring ortho carbon bearing an H atom. We identify the direct formation of o-benzoquinone to be unimportant at all temperatures, consistent with the absence of this species from experimental measurements. At temperatures higher than 1000 K, water elimination through concerted expulsion of a hydroxyl OH together with an ortho H becomes the most significant channel. Rice-Ramsperger-Kassel-Marcus simulations are performed to establish the branching ratio between these two important channels as a function of temperature and pressure. All unimolecular routes to the reported major experimental products (CO, 1,3-C(4)H(6) and cyclo-C(5)H(6)) are shown to incur large activation barriers. The results presented herein should be instrumental in gaining a better understanding of the decomposition behavior of catechol-related compounds.
    [Abstract] [Full Text] [Related] [New Search]