These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Author: Granado-Serrano AB, Martín MA, Haegeman G, Goya L, Bravo L, Ramos S. Journal: Br J Nutr; 2010 Jan; 103(2):168-79. PubMed ID: 20030899. Abstract: The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.[Abstract] [Full Text] [Related] [New Search]