These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The 285 kDa Bap/RTX hybrid cell surface protein (SO4317) of Shewanella oneidensis MR-1 is a key mediator of biofilm formation.
    Author: Theunissen S, De Smet L, Dansercoer A, Motte B, Coenye T, Van Beeumen JJ, Devreese B, Savvides SN, Vergauwen B.
    Journal: Res Microbiol; 2010 Mar; 161(2):144-52. PubMed ID: 20034561.
    Abstract:
    Shewanella oneidensis, a Gram-negative bacterium with unusual respiratory versatility, is found in soil and sediment environments, and sporadically as an opportunistic pathogen in humans and aquatic animals. The ability to form biofilms is a critical factor in the environmental spread and survival of this bacterium. We subjected S. oneidensis MR-1 to random transposon insertion mutagenesis to identify genes contributing to the ability of the organism to form biofilms on polystyrene surfaces. Follow-up of the clone that was most heavily impaired in biofilm formation led to the identification of a novel 285 kDa multi-domain protein which we have termed biofilm-promoting factor A (BpfA). BpfA is secreted by a type I secretion system to the cell surface, where it is a requisite for biofilm development. The BpfA-dependent biofilm phenotype is positively modulated by sub to low millimolar amounts of calcium. Intriguingly, BpfA features structural motifs and sequence fingerprints that can be traced back to bacterial Bap-family and RTX family proteins, two protein families harboring putative and established calcium binding sites.
    [Abstract] [Full Text] [Related] [New Search]