These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expressing Hoxa2 across the entire endochondral skeleton alters the shape of the skeletal template in a spatially restricted fashion. Author: Tavella S, Bobola N. Journal: Differentiation; 2010 Mar; 79(3):194-202. PubMed ID: 20034726. Abstract: Hox genes control morphogenesis along the antero-posterior axis. The skeleton of vertebrates offers an exemplar readout of their activity: Hox genes control the morphology of the skeleton by defining type of vertebrae, and structure of the limbs. The head skeleton of vertebrates is formed by cranial neural crest (CNC), and mainly by a Hox-free domain of the CNC. Ectopic expression of anterior Hox genes in the CNC prevents the formation of the facial skeleton. These inhibitory effects on skeletogenesis are at odds with the recognized function of Hox genes in patterning the developing skeleton. To clarify these controversial effects, we overexpressed Hoxa2 across the entire developing endochondral skeleton in mouse. This gave rise to strong and spatially restricted effects: the most noticeable abnormalities were detected in the cranial base and consisted in a failure of bones to form or in a transformed morphology of bones. The rest of the skeleton exhibited milder defects, which never consisted in the absence or the transformation of any skeletal components. Analyses at early stages of endochondral bone development showed disorganized cell condensations in the cranial base of Col2a1-Hoxa2 transgenic embryos. We show that the distribution of Hoxa2-positive cells in Col2a1-Hoxa2 embryos does not match the wild-type developing cartilages. The Hoxa2-positive cells detected in atypical, non-chondrogenic location in the cranial base, remain as chondrocytes and lay down cartilage, indicating that Hoxa2 does not alter the fate of chondrocytes, but interferes with their spatial distribution. We propose that the ability of Hoxa2 to change the spatial distribution of cells accounts for the different phenotypes observed in Col2a1-Hoxa2 embryos; it also provides an explanation for the apparent inconsistency between the inhibitory effects of Hoxa2 on skeletal development, and the ability of Hox genes to establish the morphology of the vertebrate skeleton.[Abstract] [Full Text] [Related] [New Search]