These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular and biochemical analysis of an aspartylglucosaminidase from the venom of the parasitoid wasp Asobara tabida (Hymenoptera: Braconidae). Author: Vinchon S, Moreau SJ, Drezen JM, Prévost G, Cherqui A. Journal: Insect Biochem Mol Biol; 2010 Jan; 40(1):38-48. PubMed ID: 20036741. Abstract: The most abundant venom protein of the parasitoid wasp Asobara tabida was identified to be an aspartylglucosaminidase (hereafter named AtAGA). The aim of the present work is the identification of: 1) its cDNA and deduced amino acid sequences, 2) its subunits organization and 3) its activity. The cDNA of AtAGA coded for a proalphabeta precursor molecule preceded by a signal peptide of 19 amino acids. The gene products were detected specifically in the wasp venom gland (in which it could be found) under two forms: an (active) heterotetramer composed of two alpha and two beta subunits of 30 and 18 kDa respectively and a homodimer of 44 kDa precursor. The activity of AtAGA enzyme showed a limited tolerance toward variations of pH and temperatures. Since the enzyme failed to exhibit any glycopeptide N-glycosidase activity toward entire glycoproteins, its activity seemed to be restricted to the deglycosylation of free glycosylasparagines like human AGA, indicating AtAGA did not evolve a broader function in the course of evolution. The study of this enzyme may allow a better understanding of the functional evolution of venom enzymes in hymenopteran parasitoids.[Abstract] [Full Text] [Related] [New Search]