These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. Author: Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, Mao R, Chang A, Xu G, Schneider MD, Zhang H, Fu S, Qin J, Yang J. Journal: J Biol Chem; 2010 Feb 19; 285(8):5347-60. PubMed ID: 20038579. Abstract: Transforming growth factor-beta-activated kinase 1 (TAK1) plays an essential role in the tumor necrosis factor alpha (TNFalpha)- and interleukin-1beta (IL-1beta)-induced IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1) activation. Here we report that TNFalpha and IL-1beta induce Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue within the kinase domain. Tumor necrosis factor receptor-associated factors 2 and 6 (TRAF2 and -6) act as the ubiquitin E3 ligases to mediate Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue in vivo and in vitro. Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue is required for TAK1-mediated IKK complex recruitment. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild type or a TAK1 mutant containing a K158R mutation revealed the importance of this site in TNFalpha and IL-1beta-mediated IKK/NF-kappaB and JNK/AP-1 activation as well as IL-6 gene expression. Our findings demonstrate that Lys(63)-linked polyubiquitination of TAK1 at Lys(158) is essential for its own kinase activation and its ability to mediate its downstream signal transduction pathways in response to TNFalpha and IL-1beta stimulation.[Abstract] [Full Text] [Related] [New Search]