These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate.
    Author: Kong JS, Yoo SA, Kim HS, Kim HA, Yea K, Ryu SH, Chung YJ, Cho CS, Kim WU.
    Journal: Arthritis Rheum; 2010 Jan; 62(1):159-70. PubMed ID: 20039434.
    Abstract:
    OBJECTIVE: To investigate whether sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables such as broccoli, regulates synoviocyte hyperplasia and T cell activation in rheumatoid arthritis (RA). METHODS: Synoviocyte survival was assessed by MTT assay. The levels of Bcl-2, Bax, p53, and pAkt were determined by Western blot analysis. Cytokine concentrations in culture supernatants from mononuclear cells were analyzed by enzyme-linked immunosorbent assay. The in vivo effects of SFN were examined in mice with experimentally induced arthritis. RESULTS: SFN induced synoviocyte apoptosis by modulating the expression of Bcl-2/Bax, p53, and pAkt. In addition, nonapoptotic doses of SFN inhibited T cell proliferation and the production of interleukin-17 (IL-17) and tumor necrosis factor alpha (TNFalpha) by RA CD4+ T cells stimulated with anti-CD3 antibody. Anti-CD3 antibody-induced increases in the expression of retinoic acid-related orphan receptor gammat and T-bet were also repressed by SFN. Moreover, the intraperitoneal administration of SFN to mice suppressed the clinical severity of arthritis induced by injection of type II collagen (CII), the anti-CII antibody levels, and the T cell responses to CII. The production of IL-17, TNFalpha, IL-6, and interferon-gamma by lymph node cells and spleen cells from these mice was markedly reduced by treatment with SFN. Anti-CII antibody-induced arthritis in mice was also alleviated by SFN injection. CONCLUSION: SFN was found to inhibit synovial hyperplasia, activated T cell proliferation, and the production of IL-17 and TNFalpha by rheumatoid T cells in vitro. The antiarthritic and immune regulatory effects of SFN, which were confirmed in vivo, suggest that SFN may offer a possible treatment option for RA.
    [Abstract] [Full Text] [Related] [New Search]